


$$4x + 3y = 10$$

Common point of contact being P(1, 2)

Let A and B be the centres of the required circles. Clearly, AB is the line perpendicular to t and passing through P(1,2).

...(i)

:. Equation of line AB is

$$\frac{x-1}{4/5} = \frac{x-2}{3/5} = r \begin{bmatrix} \text{As slope of } t \text{ is} = -4/3 \\ \therefore \text{ slope of } AB \text{ is} = 3/4 = \tan \theta \\ \therefore \cos \theta = 4/5; \sin \theta = 3/5 \end{bmatrix}$$

For point A, r=-5 and for point B, r=5, we get

$$\frac{x-1}{4/5} = \frac{y-2}{3/5} = -5,5 \begin{bmatrix} \text{Radius of each circle} \\ \text{being 5}, AP = PB = 5 \end{bmatrix}$$

 \Rightarrow For point A, x=-4+1, y=-3+2and For point B, x=4+1, y=3+2

$$A(-3,-1), B(5,5).$$

:. Equation of required circles are $(x+3)^2 + (y+1)^2 = 5^2$

and
$$(x-5)^2 + (y-5)^2 = 5^2$$

$$\Rightarrow x^2 + y^2 + 6x + 2y - 15 = 0$$
and $x^2 + y^2 - 10x - 10y + 25 = 0$